8 - You Can't Get There From Here: Zeno and Melissus
The paradoxes of Zeno and the arguments of Melissus develop the ideas of Parmenides and defend his Eleatic monism.
Themes:
Further Reading
J. Faris, The Paradoxes of Zeno (Aldershot: Ashgate, 1996).
P.S. Hasper, “Zeno Unlimited,” Oxford Studies in Ancient Philosophy 30 (2006), 49-85.
J. Lear, “A Note on Zeno’s Arrow,” in Phronesis 1981, 91-104.
R. McKirahan, “Zeno’s dichotomy in Aristotle,” in Philosophical Inquiry, 23 (2001), 1-24.
J. Palmer, “Melissus and Parmenides,” Oxford Studies in Ancient Philosophy 26 (2004), 19-54.
G.E.L. Owen, “Zeno and the mathematicians,” in Proceedings of the Aristotelian Society, 58 (1958), 199-222.
Comments
Zeno's Dichotomy Paradox
Zeno's Dichotomy Paradox is refuted by modern day philosophy, because a distinction is now made between a potential infinity and an "actual infinity". Al-Ghazali first established this when he, amongst his criticism of Islamic philosophers who believed in a universal understanding of Platonic Forms, used similar logic to refute the idea of an actual infinity.
And I quote:
"What about set theory?
In the other discussion, it was hinted at that in modern set theory the use of actually infinite sets is commonplace. The set of the natural numbers {0,1,2,...} has an actually infinite number of members in it. The number of members in this set is not merely potentially infinite, rather the number of members is actually infinite according to set theory.
But this merely shows that if you adopt certain axioms and rules, then you can talk about actually infinite collections in a consistent way without contradicting yourself. All it does is shows how to set up a certain universe of discourse for talking consistently about actual infinities. But it does nothing to show that such mathematical entities really exist or that an actually infinite number of things can really exist.
This isn't a claim an actually infinite number of things involves a logical contradiction but that it is really impossible. For example, the claim that something came into existence from nothing isn't logically contradictory, but nonetheless it is really impossible.
The absurdities of an actual infinity
First, let's define what absurd means here:
absurd - utterly or obviously senseless, illogical, or untrue; contrary to all reason or common sense
So when we say it results in an absurdity, we don't mean to imply that it's merely "baffling", or that it is "misunderstood" or that it is contrary to our knowledge. But rather, it is because we do understand the concept of actual infinity and the implications of it existing in actuality, that such examples cannot be true (thus, absurd).
German mathematician David Hilbert used the following illustration to show why an actual infinity is impossible. It's called "Hilbert's Hotel".
Consider a hypothetical hotel with countably infinitely many rooms, all of which are occupied – that is to say every room contains a guest. One might be tempted to think that the hotel would not be able to accommodate any newly arriving guests, as would be the case with a finite number of rooms.
Suppose a new guest arrives and wishes to be accommodated in the hotel. Because the hotel hasinfinitely many rooms, we can move the guest occupying room 1 to room 2, the guest occupying room 2 to room 3 and so on, and fit the newcomer into room 1. By repeating this procedure, it is possible to make room for any finite number of new guests.
It is also possible to accommodate a countably infinite number of new guests: just move the person occupying room 1 to room 2, the guest occupying room 2 to room 4, and in general room n to room 2n, and all the odd-numbered rooms will be free for the new guests.
This of course, results in the hotel being always able to accommodate guests, even though all the rooms were full when the guests arrived. The sign outside the hotel could read: "No Vacancy (Guests Welcome)".
It gets even more absurd. What happens if some of the guests start to check out? Suppose all the guests in the odd numbered rooms check out. In this case, an infinite number of people has left...and there are just as many guests who have remained behind. And yet...there are no fewer people in the hotel! The number is just infinite. The manager decides that having a hotel 1/2 full is bad for business. This isn't a problem with an actual infinity. By moving the guests as before, only in reverse order, he converts the half-empty hotel into one that is full! Seems like a simple way to keep doing business (in this absurd reality)...but not necessarily.
What happens if guests 4, 5, 6, etc... check out? In a single moment the hotel is reduced to a mere 3 guests (1, 2 and 3). The infinite just converted to finitude. Yet, it is the case that the same # of guests checked out this time as when all the guests in the odd-numbered rooms checked out. Hilbert's Hotel is absurd. It is impossible in actuality."
re:Infinity
Right, that comment about al-Ghazali originating that idea was definitely from left field, and I didn't mean that. I was thinking of al-Ghazali in that he had some interesting things to say about the subject, and he (IMO) did the best job of defining "potential" and "actual" infinities when it comes to medieval philosophers, using those ideas to refute a static, eternal backwards and forwards, creation.
He also wrote about Greek philosophy and his issues with it, if I remember correctly. I'll try to get back to you soon with those works.
re: Ghazali
I'll have to look into that. I'd certainly trust your opinion better than mine at this rate. Thanks for your time.
Also on Zeno's work
The arrow at rest actually seems reminiscient of Newtonian physics. Do you think there would be any substance to that comparison? I think it would have substance if Zeno was thinking of the arrow in the sense that it was being propelled, or a Greek might have termed it compelled, to go in the velocity it went.
Paradoxes
Here is an interesting resource on paradoxes from University of Notre Dame.
The link goes to the page about Zeno:
http://ocw.nd.edu/philosophy/paradoxes/eduCommons/philosophy/paradoxes/l...
Do we truly understand the Eleatics position on the infinite?
When I imagine Zeno and Parmenidies giving discourse on "Oneness" and the paradox of movement, it strikes me that these men held onto these doctrines, and found them to hold keen to truth. It brings the thought to mind: Did the Eleatics imagine things in being were possessive of the infinite?
It seems as though they did, for by stating that "All is one", and that there is no such thing as non-being, everything that we seem to know and surrounds us must be eternal (infinite) in nature and made up of things that have no beginning or end. A constant state of being.
Upholding the paradox of movement, Zeno undoubtedly moved around each day. So what was at the core of his belief, to allow him to hold true to the paradox, though he defied it at every moment?
Enter the Eleatic perception of oneness, of infinity: if all is one, nothing is short of oneness, making us, and everything else, infinite and eternal. Thus, by being, we are eternal and infinite.
Lets go from there, and look at the dichotomy paradox. If we must be in contact with an infinite number of things on our path from the baseline to the service line on a tennis court, we'd struggle as a finite being, with not enough "Time" to reach all those points. However, does this not change once we perceive ourselves possessed of oneness, being infinite ourselves? It is but a trivial matter to reach all the points, because they are not separate from us: we are in contact and a part of everything else. We can traverse the distance because it is a part of us, a part of the oneness that pervades all things. The reduction (1/2, 1/4, 1/8, etc) always leads back to the whole, and this must have been at the core of their philosophy. I may be 1 out of 7 billion people, but we're all people, and people may be one of a certain species, etc etc until we reach the most elementary piece from which all things have their origin - the oneness that Parmenides and Zeno advocated for.
I close with a question: how close can we really get to these minds, thousands of years later, pervaded with centuries of philosophy and thought, influenced by modern science and mathematics? Can we experience as they did the intoxication of their knowledge and profound reasoning? And what steps were there beyond the writings we have? Ah, so much dashing about the shadows of history, with only morsels to sate ourselves with! But the quest through darkness, unearthing light, never loses its appeal through millennia - let us continue to add to the store of treasures to be found!
Way of knowledge
Great work Peter! I am listening eagerly, with no background in philosophy, (and english is a second language). I experience the same pull as the person writing the previous post, which is to listen to these thinkers whith as much empathy as I can. The presocratics' schools, make me wonder if their search for an explanation of reality, was supposed to lead them to a fundamental experience. You say at one point, (paraphrasing), that "...their approach is a conceptual analysis rather than a search for empirical evidence". But is it possible that they were looking for an empirical "universal experience of beingness" through their reflexions? I studied the Bön/buddhist tradition, and a lot of what they are doing, ressemble what Bön practionners call "exhausion of the mind" exercises. The Koan version in Zen has that same function I believe. It is meant to bring you to the edge of conceptual analysis, (similar to Zeno paradoxes), to liberate you into pure beingness. This state comes from relasing the tension after creating an extreme investigation of the paradoxical nature of life, to get to its outer limits, to the "Unbounded Wholeness" that Bön mystics talk about (very similar to Anaximander). Is it possible that the writings of these philosophers had an adjoined "meditative" praxis in reality, that were maybe the real secret of the schools, and were transmitted directly form teacher to disciple? It might be that limiting the analysis and critic of these thinkers to the logical aspect of their arguments, makes us "literalists/reductionists", and that we are missing the real function of their work, which would be to teach us to get to an actual experience, (although it does not contradict more thought processes if required to reach the state). In the same line of reasoning (which is far fetched and probably difficult to prove), the real function of their thought processes, might have been to do away with them all together... I know it is probably a very biased and historically unsubstantiated approach, but there was so much (and still is), of that clear delineation between theory and practice in ancient cultures, and the importance of direct, but very often secret transmission of knowledge. I am tempted to contend, that through time and within the constraint of our era, we are all searching for a way to end the divisive nature of our mind, to reach an experience of lasting peace, and what best way to achieve this than do it than through the mental temporary breakdown we experience when confronted with
unsolvable paradoxes? Best to you and thank you for your great work.
Infinity in modern mathematics
Your presentation of modern mathematics' treatment of Zeno's paradoxes, which was basically that mathematics just asserts finite answers, is really inaccurate and misleading. As far back as Ancient Greek mathematicians like Eudoxus and Archimedes, and certainly after modern developments which started in the 1800s, mathematicians have done a lot of work analysing these matters, culminating in a substantive and rigorous body of work called "Analysis". This provides real answers to questions about the nature of infinite series in mathematics and physics, definitely not just a set of assertions.
infinity
It's around 8.20 where you're talking about a mathematical approach, and you say,
"we now have no problem that 1/2 + 1/4 + ... just adds up to one; in fact, we might say that the number represented by this series just IS 1".
Well, anybody who did say this would be wrong to do so. This excerpt sounded like you were essentially presenting the aforementioned fact as an axiomatic or close-to-axiomatic fact of mathematics, which nowadays is very far from the case - it can be given a substantive deduction from some very conservative axioms of logic and sets. And I don't think the wider context provided any further clarification.
And with respects to that wider context of models, I think this becomes a kind of important point... because the fact that the deduction IS substantive means there's really no reason to think of it as a tautological question of justifying an abstract model; rather, it reduces to justifying the much more fundamental and evident axioms. Once these are granted, the resolution to Zeno's problems just becomes a matter of logical consequence.
I suppose the wider point I'm making is that I felt like that section presented the mathematical work as unequivocally independent of the arguments, when the mathematics is actually substantive and of real consequence to the philosophical and physical questions... in fact I'd go so far as to say that mathematical and philosophical arguments are essentially the same thing in this case. Zeno was, after all, in the mere act of talking about these matters, adopting a whole bunch of tacit axioms about space and time, and using standard logical inferences. All mathematics does is state what these are in a formal language... which has the advantage of throwing the wobblier aspects of his discourse into sharp relief.
But of course, you have a finite time in which to distil an infinite number of arguments and counterarguments, so I suppose truncations are, regrettably, inevitable.
Math again
Indeed, I don't think there is any way he could avoid such a strategy. In simply using the word "space", he is communicating to us a concept with a bunch of properties; if this weren't the case and he weren't asserting any properties at all for the object at hand, then the word wouldn't refer to anything - and then we might as well conceptualise "space" as referring to giraffes - and then find the rest of the argument nonsensical. So, whilst the issue of whether various axioms behind a "mathematical" argument veritably describe motion is definitely something that needs to be considered, that's not a problem about mathematics per se; the same exact issue is the case with the tacit properties behind Zeno's argument. And so when (speaking rhetorically of course) you said, "to a mathematical resolution, Zeno would ask you why your model is correct", my first response to Zeno would be, "but you haven't even tried to specify what you take the properties of space to be - so what is YOUR model, and then why is THAT correct?".
P.S. thanks for all the food for thought Peter. It's hard to make critical objections without sounding negative; so let me say this podcast is truly fantastic. I tried a couple of other philosophy podcasts recently but they absolutely pale in comparison... in fact this applies to a bunch of books I've tried too, including Russell's famous one. Masterful from the very beginning.
Can time really pass?
Hi,
I'm thinking about a paradox, which may be parallel to Dichotomy paradox.
We can divide a time period (say one hour) infinitely many times. So if one hour is going to pass, first half an hour should pass and so on.
I'm wondering why Eleatics did not conclude that time does not pass at all. Maybe because it was not among Parmenides' teachings?
Or maybe they did but I have not heard of it?
Paradox of travelling a distance (infinite series): Zeno
If there are infinte mid distances in between a finite distance then is also infinite half-time avialable within the finite time.Does that solve that paradox, doc ?
Paradox of travelling a distance (infinite series): Zeno
I got that. What I was exphasizing that just like there is an infinite series of half-distance within the given distance (that has to be traversed), there is smilarly an infinite series of "half-time" within the estimated time to cover that distance. For example if that particular distance (lets say 20 m) is covered in 2 min, then half of that is covered in 1 min, 5 m with will be covered in 30 sec, 2.5 m will be covered in 15 sec and so forth. Which means as the distance can be broken into intifinte halves similarly time can be broken into infinite halves. So infinite steps were taken in simlar infinte moments of time and those infinite moments of time made it possible to traverse those infinite series of half distances. I hope I was able to explain this. English is not my mother tongue actually.
Motion is impossible
I don't see it as rediculous for Parmenides and his followers to think that motion is impossible. They obviously are not referring to the idea of motion that modern people would think based on Newton's Laws and modern physics. I can understand how the Eleatics would see me walking down the street for example as not moving. Obviously, I am moving, but that is only with respect to some other observer: the street, the sun, someone watching. If two people are moving at the same speed relative to each other, then they seem to not be moving at all to each other. I think the Eleatic notion that moving/motion is impossible is given credence due to this notion of relativity.
Though Melissus wouldn't like it, if we were to think of the sphere of reality as a clear, solid, glass ball, it would look to us that not only is the ball not moving, but nothing inside of it is moving either. However, that is not the case. From the perspective of an atom inside the ball, there is a lot of motion happening, with electrons flying around and everything shaking like crazy. If we go even smaller to the perspective of a proton on an atom in the ball, its vibrating along with all the protons and neutrons around it and can see streaks of electron flying by every so often. If we tell the proton that moving is impossible, it would just laugh because obviously it is impossible (no, laughing protons are not impossible). However, looking at the ball in its totality (oneness), we see it as not moving at all. By analogy, I think this is the perspective that Parmenides and the Eleatics had of reality. It is pretty convincing, and I can see why it lasted as long as it did in the history of philosophy. I like Aristotle's view that as one thing moves, it allows another to take its place, similar to what goes on at the quantum level in the glass ball.
There is still the whole problem of the "outside" which would imply non-being, but despite that, I think it problematic to apply the modern conception of motion (which is packed with unique meaning given the last 4 hundred years of physics) with the presocratic. I would be interested to see the original work of Parmenides and other Eleadics in the Greek to see if that would shed light on what seems obviously wrong in Eleadic thought from the modern perspective.
If what you say is true, then
If what you say is true, then I find it very difficult to see the world from the perspective of an Eleatic given my experience of reality. If I am going to criticize their metaphysic, I want to do it on their terms. Obviously there is a multiplicity; I am me and my computer is not me. However, the idea of a computer cannot exist independently from anything else in existence. One could argue that my computer and I being different is just a useful categorical tool used by humans in order to make sense of the world. Meaning, there is no real separation/difference/multiplicity. Everything simply is. In Eleatic terms, there is only one thing, Being.
I find it hard to believe that if I were to ask an Eleatic if he and I were different or if he and I together made two people that he would say no. Sure, ultimately there is no separation and all is one. I can get behind that. It may be the case that everything simply is and that multiplicity is an illusion, but in order to live a human life, I would argue that one (including the Eleatics) must give into the illusion at least a little bit. My experience tells me that there is separation, even if it's an illusion.
If the Eleatics were seriously telling people that they weren't moving when they were clearly walking or that there was no difference or separation between themselves and a tree, it seems to me that they were simply crazy, or they were caught up in an abstract argument that seemed to defy their immediate experience, and instead of trying to figure out the flaws in the abstract argument, they just decided that all experience is an illusion.
I think what I am trying to say is that based on my understanding of the Eleatic worldview, one cannot prove that it is correct or not in the same way that I cannot prove that I actually exist or not.
It could be that I'm misunderstanding their worldview, but I feel as if understanding their worldview from their perspective can't lead to the conclusion that they were simply dumb because they thought motion was impossible when it clearly is. It had to have made sense from their perspective.
Thanks!
Okay, I think I get it now. If I was in a room with an Eleatic, and he was explaining to me his monist theory, my critique of him would be that: the very fact that he is explaining his theory to me implies a contradiction because he would have to accept that he and I were different to even have the conversation. His responce to me would be something like, "No it is not a contradiction. Everything is simply one. These ideas of 'you,' 'I,' and 'conversation' are illusions. Therefore, there is no multiplicity, no motion, no duality." Is that more or less accurate?
Thank you, by the way, for your work on this podcast. I am really enjoying it so far. Hopefully I will be able to catch up soon, as I am only on episode 15. I'm especially excited to listen to the Islamic World talks, as I have almost no background in the History of Islamic thought. I wish you the best as you continue with this massive project.
Paradoxes
I have an issue with the contemporary view of Zeno's paradox as not giving the people of the era the credit they deserve in terms of intellectual capacity, and just is not very satisfying. However, when i read it, instead of a paradox of motion, but a paradox of discreet space, it makes more sense. I understand that discrete vs continuous was a debate at this time in mathimatics as well, which would further that viewpoint. That instead of proving motion to be impossible, it proves that motion through a set of discreet points requires an infinite number of them, so discreet motion is impossible. Thus motion must be expressed as continous. This would then draw into question, if the path from A to B is continous, not a sum of discreet points, then how can we even say the fixed points of A and B exist? This would also feed into Parmenides's theories then, because A and B would be part of a continous whole. The arrow in motion, but at a fixed point, would also then line up with this view instead of just motion. So I ask, do we know for sure that Zeno's paradox is about the impossibility of motion? Or do we just know the paradox, and infered it to be about motion?
If things are many, then things are infinite
Hi, Peter!
Many philosophers and mathematicians claim that, when Zeno says that if a distance is infinitely divisible, then it's infinitely large, his mistake lies in thinking that the sum of of infinite series is infinite, which is not the case. I think it was Vlastos who said that the only way for the sum of an infinite series to be infinite is if it has a smallest member. Why do you think he says that?
I just found the text
I just found the text containing the Vlastos argument I was talking about: "There must have been some tacit assumption which would have made it seem obviously true that any collection of an infinite number of sizeable parts would have to be infinitely large: so very obviously. that even someone who knew all about Aristotle's theorem (as Simplicius certainly did, and some of Epicurus' associates almost as certainly) would not think of applying it to the present case, but infer forthwith inflnity of size for the container from infinity of number of the parts contained. I cannot imagine what this could be except that the collection had a smallest member. This would be quite sufficient to make the conclusion seem a matter of course: given an infinity of nonoverlapping parts the least of which has some finite magnitude, it would be obvious that the aggregate magnitude would be infinite." Try as I might, I fail to see how having a smallest member could make the sum infinite. If ½ + ¼ + 1/8 + 1/16 + 1/32 + 1/64…. (no smallest term) converges on 1, why would the sum of the members of this geometric series be infinite if, say, 1/64 were the smallest member?
Thank you, Peter. I now see
Thank you, Peter. I now see where I made the mistake: Vlastos is indeed talking of another paradox—the one where he says that, if things are many, then they are both infinitely small and infinitely large. I realize now that how you make the divisions matters. In the Dichotomy and the Achilles, you first divide the distance in half, then either the first or second resulting halves in half, then the quarters, ad infinitum. The result is that you never get from A to B, or that you can never leave A at all. In this paradox, the dichotomizing is done in such a way that the result is equal parts, instead of the parts represented by the notation I used (geometric series), and now I understand why Vlastos says what he says: if there is a smallest part, and it has magnitude, the sum of all members will be infinite! Thank you very, very much for helping me see this. Studying philosophy on your own is a, as they say, fraught with peril. Having the help of a scholar like you makes all the difference.
Praise
This site/project/enterprise is magnificent. I cannot praise it highly enough. It makes the rubbish strewn underground car park of the internet worthwhile. Please carry it on and bring it up to the present day.












Add new comment